(12b^2-4b-40)/(24b^2+61b+35)=0

Simple and best practice solution for (12b^2-4b-40)/(24b^2+61b+35)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (12b^2-4b-40)/(24b^2+61b+35)=0 equation:


D( b )

24*b^2+61*b+35 = 0

24*b^2+61*b+35 = 0

24*b^2+61*b+35 = 0

24*b^2+61*b+35 = 0

DELTA = 61^2-(4*24*35)

DELTA = 361

DELTA > 0

b = (361^(1/2)-61)/(2*24) or b = (-361^(1/2)-61)/(2*24)

b = -7/8 or b = -5/3

b in (-oo:-5/3) U (-5/3:-7/8) U (-7/8:+oo)

(12*b^2-(4*b)-40)/(24*b^2+61*b+35) = 0

(12*b^2-4*b-40)/(24*b^2+61*b+35) = 0

12*b^2-4*b-40 = 0

4*(3*b^2-b-10) = 0

3*b^2-b-10 = 0

DELTA = (-1)^2-(-10*3*4)

DELTA = 121

DELTA > 0

b = (121^(1/2)+1)/(2*3) or b = (1-121^(1/2))/(2*3)

b = 2 or b = -5/3

4*(b+5/3)*(b-2) = 0

24*b^2+61*b+35 = 0

24*b^2+61*b+35 = 0

DELTA = 61^2-(4*24*35)

DELTA = 361

DELTA > 0

b = (361^(1/2)-61)/(2*24) or b = (-361^(1/2)-61)/(2*24)

b = -7/8 or b = -5/3

(b+5/3)*(b+7/8) = 0

(4*(b+5/3)*(b-2))/((b+5/3)*(b+7/8)) = 0

( b+5/3 )

b+5/3 = 0 // - 5/3

b = -5/3

( b-2 )

b-2 = 0 // + 2

b = 2

b in { -5/3}

b = 2

See similar equations:

| X+19=35 | | 5x-4y=-32 | | 6=z/4.1 | | 7*3j=22 | | 7.2=0.9y | | 6=12s-6 | | 5x+60-3x-70=22 | | 3b^2-b-10=0 | | 4x+18=-88-8x | | (1-k)x^2-2kx-3k+2=0 | | 1/2x+2=5+5/6x | | 5/2x+x-4=22 | | 24b^2+61b+35=0 | | (2x-4)(x+2)= | | 3j/9=3 | | 6z+19=2z+7 | | 24b*2+61b+35=0 | | 48-7x=20x+18 | | r^2-10tw+5wr-2tr= | | 8x+4=5/2x-3/2 | | 1/2(p+13)=14 | | -8x(5x-2)= | | -5(-z+3)+10=5-6z | | 6t=30 | | 2/5-3 | | 3-5/7y=1/2 | | 3.2e=-22.4 | | 12(2x-1)=4(6x+7) | | -64x^3-8x^2= | | X^2+12=180 | | 4x=(18+47x) | | 4+2y-1=5y+10-2y |

Equations solver categories